
File Security
Lock Down Your Data

Brian Reames
January 22, 2012

Table of Contents

1.0 Basic Linux Permissions..4
1.1 Determining Permissions……………………………………………………………………..................... 5
1.2 File Permissions vs. Directory Permissions………………………………………………….............. 6
1.3 Changing Permissions………………………………………………………………………….................... 7

1.3.1 Symbolic Method…………………………………………………………………….................... 8
1.3.2 Octal Method………………………………………………………………………..................... 10
1.3.3 Changing Permissions Graphically……………………………………………….............. 12

1.4 Examples of Unintentional Access…………………………………………………………................. 13
2.0 Setting Default Permissions………………………………………………………………………...................... 15

2.1 Common umask Settings……………………………………………………………………....................17
3.0 Advanced Linux Permissions……………………………………………………………………….................... 18

3.1 Special Permission: setuid………………………………………………………………….....................19
3.1.1 Setting the setuid Permission……………………………………………………................ 20
3.1.2 Caution Regarding setuid………………………………………………………….................22

3.2 Special Permission setgid……………………………………………………………………................... 23
3.2.1 setgid on a File……………………………………………………………………...................... 24
3.2.2 setgid on a Directory……………………………………………………………….................. 25
3.2.3 Caution Regarding setgid…………………………………………………………................. 28

3.3 Special Permission: sticky bit………………………………………………………………................... 29
3.3.1 Setting sticky bit……………………………………………………………………....................30

File Security: Lock Down Your Data Page 2

Table of Contents

4.0 Access Control Lists……………………………………………………………………………….......................... 31
4.1 Enabling ACLs……………………………………………………………………………….......................... 32
4.2 Setting ACLs…………………………………………………………………………………..........................33
4.3 The Mask Setting……………………………………………………………………………........................ 35
4.4 Order of Precedence for Permissions……………………………………………………….............. 37
4.5 Displaying ACLs………………………………………………………………………………....................... 38
4.6 Removing ACLs………………………………………………………………………………........................39
4.7 Default ACLs…………………………………………………………………………………......................... 40

4.7.1 Creating Files in an ACL Directory………………………………………………............... 42
4.7.2 Creating a Subdirectory in an ACL Directory…………………………………….......... 43

Apendix A: Summary of Commands……………………………………………………………….................... 44

Apenxix B: Additional Resources…………………………………………………………………….................... 45

File Security: Lock Down Your Data Page 3

1.0 Basic Linux Permissions

Permissions are Linux's method of protecting files and directories. Every file or directory is
owned by a user and assigned to a group. The owner of a file has the right to set permissions in
order to protect the file from being accessed, modified or destroyed.

File Security: Lock Down Your Data Page 4

1.1 Determining Permissions

To determine the permissions of a file, use the ls -l command. The first character of the output of
the ls -l command specifies the file type. The next nine characters represent the permissions set
on the file. There are three types of permissions: r (read), w (write), and x (execute). These
permissions have different meanings for files and directories.

The first three permissions are for the user owner, second three are for people in the group, and
last three are for everyone else (others).

-rw-r--r-- 1 steve staff 512 Oct 11 10:43 tmp

permissions user owner group

Therefore, in the preceding example, the owner of the file (steve) has read and write
permissions, the members of the group (staff) have read permission and everyone else has read
permission.

Group accounts

Groups were invented to provide more flexibility when issuing permissions. Every user is a
member of at least one group (a primary group) and may be a member of additional (secondary)
groups. To see the groups you belong to, type the groups command.

File Security: Lock Down Your Data Page 5

1.2 File Permissions vs. Directory Permissions

Permissions have different meaning on files and directories. The following chart illustrates the
differences:

Permission Symbol Meaning for Files Meaning for Directories

Read r Can view or copy file Can list with ls

Write w Can modify file Can add or delete files in the directory (if execute
permission is also set)

Execute x Can run file like a
program

Can cd to that directory. Can also use that
directory in a path.

File Security: Lock Down Your Data Page 6

1.3 Changing Permissions

Only the person who owns a file (and the root user) can change a file's permissions.

There are two methods of changing the permissions on a file: symbolic and octal. The chmod
command is used in both cases.

File Security: Lock Down Your Data Page 7

1.3.1 Symbolic method

The symbolic method is useful for changing just one or two permissions. Following the chmod
command, you specify three items: whose permissions you wish to change, whether you want to
add or remove the permission, and the permission itself. The following chart illustrates the
possibilities:

Who Operand: Permission:
u (user/owner) - (remove) r (read)
g (group) + (add) w(write)
o (other) = (set) x (execute)
a (all three)

File Security: Lock Down Your Data Page 8

For example, the following removes group read permission for the file myprofile:

[steve@machine steve]$ ls -l
-rw-r--r-- 1 steve staff 512 Oct 11 10:43 myprofile
[steve@machine steve]$ chmod g-r myprofile
[steve@machine steve]$ ls -l
-rw----r-- 1 steve staff 512 Oct 11 10:43 myprofile

You can specify multiple permissions to change; the following example will add execute
permission for the user owner and remove read permission for others for the file myprofile:

[steve@machine steve]$ ls -l
-rw----r-- 1 steve staff 512 Oct 11 10:43 myprofile
[steve@machine steve]$ chmod u+x,o-r myprofile
[steve@machine steve]$ ls -l
-rwx------ 1 steve staff 512 Oct 11 10:43 myprofile

File Security: Lock Down Your Data Page 9

1.3.2 Octal Method
The octal method is useful when you have to change many permissions on a file. It is based on
the octal numbering system:

4 = read
2 = write
1 = execute

By using a combination of numbers from 0 to 7, any possible combination of read, write and
execute permissions can be specified. The following chart illustrates all of the possible
combinations:

Value Meaning
7 r w x
6 r w -
5 r - x
4 r - -
3 - w x
2 - w -
1 - - x
0 - - -

When the octal method is used to change permissions, all nine permissions must be specified.
Because of this, the symbolic method is generally easier for changing a few permissions while the
octal method is better for changes that are more drastic.

File Security: Lock Down Your Data Page 10

To change the permission for the myprofile file to the permissions rwxrw-r-- use the following
command:

[steve@machine steve]$ cd
[steve@machine steve]# ls -l
-rw----r-- 1 steve staff 512 Oct 11 10:43 myprofile
[steve@machine steve]# chmod 764 myprofile
[steve@machine steve]# ls -l
-rwxrw-r-- 1 steve staff 512 Oct 11 10:43 myprofile

File Security: Lock Down Your Data Page 11

1.3.3 Changing Permissions Graphically

If you use the File Browser application (nautilus), you can set permissions for files or directories
you own.

Navigate to where the file is located and then select it. Next, using the File menu, or the right-
click menu, choose Properties. Then click on the Permissions tab.

If the file is a folder (directory), then there are two sets of permissions to set. The folder access
permissions determine the access to the directory. The file access permissions will be applied to
the existing files within the directory. Remember to click the button at the bottom of the dialog
to "Apply Permissions to Enclosed files".

File Security: Lock Down Your Data Page 12

1.4 Examples of Unintentional Access

Example 1 Can Janet read or modify Bob’s file, test.file?

[bob@machine example]$ ls -l
-rw-r--r-- 0 bob users 100 2011-01-01 11:00 test.file

Example 2 Suppose Janet and Bob both belong to the “users” Can Janet read or modify Bob’s
file, /example/test.file, now?

[bob@machine example]$ ls –ld
drwxrwxr-- 0 root users 100 2011-01-01 11:00 example
[bob@machine example]$ ls -l
-rw-r--r-- 0 bob users 100 2011-01-01 11:01 test.file

Example 3 Suppose an administrator creates a subdirectory for bob to store his files in. Would
Janet be able to view or modify /example/bob/test.file?

[bob@machine example]$ ls –ld
drwxrwxr-- 0 root users 100 2011-01-01 11:00 example
[bob@machine example]$ ls –ld bob/
drwxrwxr-- 0 bob bob 100 2011-01-01 15:27 bob
[bob@machine example]$ ls –l
-rw-r--r-- 0 bob users 100 2011-01-01 11:01 test.file

File Security: Lock Down Your Data Page 13

Answer 1 Maybe…Janet must also have read and execute permission on the parent directory
in order to get to the file.

Answer 2 Yes; Janet will be able to access the information in the file. No; Janet should not be
able to modify the file…but she can copy the contents to a new file, modify it, and
delete the original. Janet can delete Bob’s test.file because she has “write”
permission on the directory! She may also be able to force changes to the file,
depending on how she decides to modify it.

Answer 3 No; Janet will not be able to view the file because she does not have “execute”
permission on its parent directory. No; she cannot modify the file because she does
not have “write” permission on the file and she cannot “execute” into the directory.
Janet cannot force changes to the file because she does not have “write” or
“execute” permission on the parent directory. Furthermore, she cannot delete
the /example/bob directory; rmdir will fail because the directory is not empty. rm
-r will fail because she does not have “execute” permission on the directory.

As shown above permissions in shared directories can quickly become complex. Advanced
permissions exist to deal with these and other logistical concerns. These permissions will be
discussed later in this presentation.

File Security: Lock Down Your Data Page 14

2.0 Setting Default Permissions

When you create a file or directory, predefined permissions are set on that file or directory. The
maximum default permissions are:

files rw-rw-rw-
Directories rwxrwxrwx

To change the default permissions, you must change the umask setting.

The following text and chart can be used to determine an umask entry:
1. Know the MAXimum possible permissions for files and directories.
2. Determine what you want your permissions to be when you create either a new file or

directory. You will need to pick one (either file or directory) and understand that the umask
command affects both.

3. Determine what permissions of the MAXimum permissions need to be taken out (MASKed
out).

4. Compute the values (in octal notation) of what needs to be MASKed out for the owner, group
and other. The resulting three numbers is what you will use to set your umask.

Step File Directory
1 MAX rw- rw- rw- rwx rwx rwx
3 MASK --- -m- mmm --- -m- mmm
4 umask=027 0 2 7 0 2 7
2 desire rw- r-- --- rwx r-x ---

File Security: Lock Down Your Data Page 15

The umask command displays and changes default permissions:

[user@machine ~]# umask
027
[user@machine ~]# umask 026
026

The umask command will only alter the umask of the shell it is executed in; the new umask will
be lost upon logging out or opening a new shell. In order for this new umask setting to be a
permanently changed, you must place the umask command into your initialization file.

[user@machine ~]$ echo “umask 026” >> .bashrc

The above command will append the new umask rule to your initialization file. Any future bash
shells opened by “user” will have a umask set automatically to 026.

File Security: Lock Down Your Data Page 16

2.1 Common umask Settings

Below are illustrated a few common umask settings, the default permissions they create, and
some advantages and disadvantages of each scheme.

umask 002 Files: 664 -rw-rw-r-- Common to systems that use user-only groups
(user, bob; group bob). Under this scheme,
files will be readable by anyone on the system
by default.

Directories: 775 drwxrwxr-x

umask 022 Files: 644 -rw-r--r-- Traditionally the default for Linux and Unix
systems. More secure, but still flexible.Directories: 755 drwxr-xr-x

umask 077 Files: 600 -rw------- Very secure. However, this may cause access
problems to common scripts. Absolutely no
collaboration by default.

Directories: 700 drwx------

File Security: Lock Down Your Data Page 17

3.0 Advanced Linux Permissions

In most circumstances, basic Linux permissions will be enough to accommodate the security
needs of individual users or organizations. However, when multiple users need to work routinely
in the same directories and files, these permissions may not be enough. The special permissions
setuid, setgid and the sticky bit are designed to address these concerns.

Even finer-grained control can be achieved with Access Control Lists (ACLs) where needed.

File Security: Lock Down Your Data Page 18

3.1 Special Permission: setuid

When a user runs a command that accesses files, the system checks the user’s permissions for
the files. In some cases, this may cause problems.

Consider a command like passwd. When this command runs, it edits the /etc/shadow file. If you
look at the permissions of the /etc/shadow file, you will see that the permissions are: --- --- ---

So, when the typical user runs the passwd command and the system tries to access (modify) the
/etc/shadow file, it will deny the user access…except…

The passwd command has a special permission set on it called setuid. When the passwd
command is run and the command accesses files, the system pretends that the person accessing
the file is the owner of the passwd command, not the person who is running the command.

[bob@machine ~]$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 31768 Jan 28 2010 /usr/bin/passwd
[bob@machine ~]$ id
uid=10051(bob) gid=1001(other)
[bob@machine ~]$ passwd (accesses files as root, not bob)

File Security: Lock Down Your Data Page 19

3.1.1 Seting the setuid permission

The setuid permission can be set using either octal or symbolic methods:
• To add the setuid permission symbolically, run: chmod u+s <file>
• To add the setuid permission numerically, add 4000 to the file’s existing permissions:

chmod 4775 <file>
• To remove the setuid permission symbolically, run: chmod u-s <file>
• To remove the setuid permission numerically, subtract 4000 from the file’s existing

permissions: chmod 0775 <file>

File Security: Lock Down Your Data Page 20

In the following example, adding the setuid permission to the ls command would allow user bob
the ability to view the contents of a restricted directory (such as /etc/lvm).

[bob@machine ~]$ ls -l /bin/ls
-rwxr-xr-x. 1 root root 111744 Jun 14 2010 /bin/ls
[bob@machine ~]$ ls /etc/lvm/
ls: cannot open directory /etc/lvm/: Permission denied
[bob@machine ~]$ ls -ld /etc/lvm/
drwx------. 5 root root 4096 May 6 15:40 /etc/lvm/
[bob@machine ~]$ exit
logout
[root@machine ~]# chmod u+s /bin/ls
[root@machine ~]# ls -l /bin/ls
-rwsr-xr-x. 1 root root 111744 Jun 14 2010 /bin/ls
[root@machine ~]# su - bob
[bob@machine ~]$ ls /etc/lvm/
archive backup cache lvm.conf
[bob@machine ~]$ exit
logout
[root@machine ~]# chmod a-s /bin/ls
[root@machine ~]# ls -l /bin/ls
-rwxr-xr-x. 1 root root 111744 Jun 14 2010 /bin/ls

Notice the “s” character located in the owner’s permissions. This indicates that the setuid
permission is set. If the “s” is lower case, it means both setuid and the execute permission are
set. If the “S” is upper case, it means only setuid (not execute) is set.

File Security: Lock Down Your Data Page 21

3.1.2 Caution Regarding setuid

setuid files present a security risk on the system (especially files that are owned by root). Be
careful of creating files with setuid and make sure you are aware of which files have setuid on
your system.

Note: the setuid permission is not honored on regular user scripts, such as bash scripts.

You can use the find command to find which programs on the system have the setuid
permission set:

[root@machine ~]# find / -perm -4000 -ls
{output omitted}

File Security: Lock Down Your Data Page 22

3.2 Special Permission: setgid

Setgid is similar to setuid, but uses the group owner permissions. There are actually two forms
of setgid permissions: setgid on a file and setgid on a directory. How setgid works depends on
if it is set on a file or directory, and may not always be obvious.

File Security: Lock Down Your Data Page 23

3.2.1 setgid on a File

This essentially means the same thing as setuid on a file. When someone runs the command,
instead of accessing files as any group the person is a part of, the system pretends the person is
a member of the group that owns the file.

You can use the find command to find which files on the system have the setgid permission set:

[root@machine ~]# find / -type f -perm -2000 -ls
{output omitted}

File Security: Lock Down Your Data Page 24

3.2.2 setgid on a directory

Files created in a directory with setgid are automatically group-owned by the directories group,
not the creators primary group.

Consider the following situation: Four people from different primary groups in a company are
working on a common project. The four users and the groups to which they belong are:

User Primary Group Supplementary Groups
bob bob beta, staff
steve steve accounting, beta, staff
sue sue beta, payroll
nick nick admin, beta

The company policy is for all users to have the umask 027. With this umask, new files will have
initial permissions of 640 and new directories will have initial permissions of 750.

In an attempt at collaboration, a new directory is created with the following characteristics. It is
group owned by beta (a group common to all four users) and the group has read, write, and
execute permissions on the directory. All users will store the files for this project in a directory
called /home/beta_prog_a

[root@machine ~]# mkdir /home/beta_prog_a
[root@machine ~]# chgrp beta /home/beta_prog_a
[root@machine ~]# chmod g+w /home/beta_prog_a
[root@machine ~]# ls -ld /home/beta_prog_a
drwxrwx---. 2 root beta 4096 May 24 08:28 /home/beta_prog_a

File Security: Lock Down Your Data Page 25

After a few of the users store some files in this directory, a listing of that directory looks like this:

[root@ocs ~]# ls -l /home/beta_prog_a/
total 6
-rw-r-----. 1 bob bob 124 May 24 08:31 2011_data
-rw-r-----. 1 nick nick 575 May 24 08:32 hr_data
-rw-r-----. 1 sue sue 560 May 24 08:32 salaries
-rw-r-----. 1 steve steve 560 May 24 08:32 tax_table

Based upon the above information, you will note that there is a problem here. While each user
can store files in the /home/beta_prog_a directory, no user can see another user’s work. In its
current state, this directory is not truly collaborative.

File Security: Lock Down Your Data Page 26

We can correct this problem with a few easy steps:

1. Add the setgid permission to the directory.
2. Recursively change group ownership to any existing files in the directory.

After taking these steps, any new file in the directory /home/beta_prog_a will be group owned by
beta. Example:

[root@ocs ~]# chmod g+s /home/beta_prog_a/
[root@ocs ~]# chgrp -R beta /home/beta_prog_a/
[root@ocs ~]# ls -ld /home/beta_prog_a/
drwxrws---. 2 root beta 4096 May 24 08:32 /home/beta_prog_a/
[root@ocs ~]# ls -l /home/beta_prog_a/
total 6
-rw-r-----. 1 bob beta 124 May 24 08:31 2011_data
-rw-r-----. 1 nick beta 575 May 24 08:32 hr_data
-rw-r-----. 1 sue beta 560 May 24 08:32 salaries
-rw-r-----. 1 steve beta 560 May 24 08:32 tax_table

Notice the “s” character located in the group’s permissions. This indicates that the setgid
permissions is set. If the “s” is lower case, it means both setgid and the execute permission are
set. If the “S” is upper case, it means only setgid (not execute) is set.

Note: While members of the beta group can read each other’s files, they cannot easily modify the
files. This could be corrected by either changing their umask values or setting default ACLs on
the directory (covered later in this presentation).

File Security: Lock Down Your Data Page 27

3.2.3 Caution Regarding setgid

setgid files present a security risk on the system (especially files that are owned by system
groups). Be careful of setting the setgid permission on files and make sure you are aware of
what setguid files are on your system.

You can use the find command to find which files on the system have the setgid permission set:

[root@ocs root]# find / -type f -perm -2000 –ls
{output omitted}

The setgid permission on directories is typically used for collaboration and is not much of a
security risk. You can use the find command to find which directories on the system have the
setgid permission set:

[root@ocs root]# find / -type d -perm -2000 –ls
{output omitted}

File Security: Lock Down Your Data Page 28

3.3 Special Permission: sticky bit

Consider the following situation: You have a directory in which users can post announcements
called /export/home/pub. In order for all users to be able to post (create files) in this directory,
you need to set the permissions to 777.

Unfortunately, these permissions also allow any user to remove any file from the pub directory.
What if a user decides to run the command rm -r * on that directory?

The sticky bit permission gives you the ability to allow anyone to add to a directory, but limits
who can delete files in that directory. The only users who can delete files in a sticky bit directory
are:

1. root
2. The owner of the directory
3. The owner of the file

File Security: Lock Down Your Data Page 29

3.3.1 Seting sticky bit

To set the sticky bit permission symbolically, run: chmod o+t DIRECTORY
To set the sticky bit permission numerically, add 1000 to the directory’s existing permissions.

[root@ocs ~]# chmod 1777 /export/home/pub
[root@ocs ~]# ls -ld /export/home/pub
drwxrwxrwt. 2 root root 4096 May 24 09:10 /export/home/pub

Notice the “t” character in the place where the “x” should be for others. If the “t” is lower case, it
means both the sticky bit and execute permission are set. If the “T” is upper case, it means only
the sticky bit (not execute) is set.

File Security: Lock Down Your Data Page 30

4.0 Access Control Lists

Consider the following situation: There are 500 user accounts on a system. The group “payroll”
has 15 users assigned to it. Bob, who is a member of the payroll group, creates the file “salaries”
and gives it the permissions 660. Bob also changes the file to be group owned by the payroll
group.

In this scenario, Bob and all the members of the payroll group have the ability to read and
modify the salaries file. Nobody else can do anything with this file.

The CEO of the company, who is not in the payroll group, requests to have read access to this
file. There are two methods of giving the CEO access to the file:

1. Add the CEO to the payroll group.
2. Give read permission to everyone.

Obviously, the second method is a very bad idea. The first method might be ok; however, there
are a couple of disadvantages:

1. Each user can only be assigned to 16 groups.
2. The CEO now has access to any file that is group owned by payroll.

The ext3 and ext4 filesystems include a feature called Access Control Lists. ACLs allow you to
specify permissions for individual users or groups.

File Security: Lock Down Your Data Page 31

4.1 Enabling ACLs

While ext3 and ext4 filesystems are capable of allowing ACLs, ext3 and ext4 filesystems created
after the system was installed don't normally have this feature enabled by default. To enable
ACLs, you may need to have the filesystem mounted with the "acl" option or you need to add acl
as a default mount option to the filesystem’s superblock. Note that any ext3 or ext4 filesystem
created during installation (including the /boot and / filesystems) should already have this
feature enabled by default.

The mounting process will be discussed in greater detail in a future unit. For now use the
following command to enable ACLs on a filesystem:

mount -o remount,acl /mount_point

To enable ACLs by default at boot, modify the “options” column for the filesystem in the
/etc/fstab file to include “acl”

/dev/sdb /deep_storage ext4 acl 0 0

File Security: Lock Down Your Data Page 32

 4.2 Setting ACLs

To create a new ACL for a file or a directory, use the setfacl command with the
-m option. The following are some typical examples of using the setfacl command. Additional
examples can be found at the bottom of the man page for setfacl.

setfacl -m user:bob:6 sample.txt
setfacl -m group:games:rw sample.txt

The setfacl command is fairly flexible allowing the use of full words or abbreviations as well as
symbolic or octal permissions. When using symbolic permissions, dashes can be omitted (except
for 0 where one dash is required).

Abbreviations Symbolic & Octal Permissions
user = u rwx = 7 -wx = 3
group = g rw- = 6 -w- = 2
other = o r-x = 5 --x = 1
mask = m r-- = 4 --- = 0
default = d

File Security: Lock Down Your Data Page 33

Consider how to give the saleries.txt file the permissions of…

Owner: rw-
Group: r--
Others: r--
Mask: rw-
ceo rw-
games rw-

[root@machine payroll]# ls -l saleries.txt
-rw-r--r-- bob payroll 100 2012-01-11 01:12 saleries.txt

The regular file permissions for the owner, the group, and others already match, so there is no
need to set specific ACLs for them. You can set the ACL permissions for user bob and group
games with either one command or two in either the short format of the long format:

[root@machine payroll]# setfacl -m u:ceo:6,g:games:6 saleries.txt

…or the commands:

[root@machine payroll]# setfacl -m user:ceo:rw saleries.txt
[root@machine payroll]# setfacl -m group:games:rw saleries.txt

Note: UID and GID numbers can be used instead of user or group names.

File Security: Lock Down Your Data Page 34

4.3 The Mask setting

The mask setting enforces a “maximum” permission for all users and groups (except the owner)
of the file. The mask is automatically calculated when a new ACL is placed on a file or directory.
When calculated automatically, it equals the maximum combined permissions of any user or
group (except the owner). When set explicitly, it can modify a user or group’s effective
permissions. Therefore, in the previous example, if we also ran (setfacl -m m:4 sample.txt) the
effective permissions for both user bob and group games would be just read (not read/write). We
will examine this setting in more detail after looking at how to display ACLs.

File Security: Lock Down Your Data Page 35

The mask setting is intended to provide you a method of avoiding accidentally setting
permissions that give undesired access to the file.

Unfortunately, this often means that the permissions that you specify are not the permissions
that you end up getting:

[root@machine payroll]# setfacl -m m:4 saleries.txt
[root@machine payroll]# getfacl saleries.txt
file: saleries.txt
owner: root
group: root
user::rw-
user:bob:rw- #effective:r--
group::r--
group:games:rw- #effective:r--
mask::r--
other::r--

In this example, the user bob only gets read permission on the file even though our original
setfacl command requested both read and write permissions.

Note: If you change a user or group ACL, the mask setting may be changed as well to allow the
specified permissions.

File Security: Lock Down Your Data Page 36

4.4 Order of Precedence for Permissions

Setting ACLs on a file or a directory does not negate user, group, and other permissions. The
following evaluations take place. Note that with the exception of groups, access is granted based
on the first match.

1. Are you the user owner of the file? If so you get the regular user owner’s permissions.
2. Is there a specific ACL for your user? If so, you get the permissions specified by the ACL for

your user.
3. Do you belong to the group that owns the file or is there a specific ACL for a group to which

you belong? If so, you get the maximum combined regular and ACL permissions for all of
your groups.

4. If none of the above match, you get the permissions designated for others.

File Security: Lock Down Your Data Page 37

4.5 Displaying ACLs

When a file has an ACL, a “+” character will be displayed next to the permissions of the file when
you run the ls -l command:

[root@machine payroll]# ls -l saleries.txt
-rw-rw-r--+ 1 bob payroll 100 2012-01-11 01:12 saleries.txt

To display ACLs, use the command getfacl:

[root@machine payroll]# getfacl saleries.txt
file: saleries.txt
owner: root
group: root
user::rw-
user:ceo:rw-
group::r--
group:games:rw-
mask::rw-
other::r--

File Security: Lock Down Your Data Page 38

 4.6 Removing ACLs

To remove an ACL, use the -x option:

[root@machine payroll]# setfacl -x u:ceo saleries.txt
[root@machine payroll]# getfacl saleries.txt
file: saleries.txt
owner: bob
group: payroll
user::rw-
group::r--
group:games:rw-
mask::rw-
other::r--

Note: If the ACL permission is the last one in the ACL table, the ACL table will be removed and
the “+” character next to the permissions will no longer be displayed.

Other useful setfacl options:

Option Description
-b Remove all ACLs (owner, group & other permissions still apply)
-R Apply ACLs to directory and all contents (recursive)

File Security: Lock Down Your Data Page 39

4.7 Default ACLs

If you apply a default ACL to a directory, that ACL will be applied automatically to all new files
and subdirectories created within that directory. This can be done by adding either “d” or
“default” to the setfacl command.

[root@machine home]# mkdir acl_dir
[root@machine home]# setfacl -m d:u:bob:7 acl_dir

Notice the location of default ACL permissions when running getfacl:

[root@machien home]# getfacl acl_dir
file: acl_dir
owner: root
group: root
user::rwx
group::r-x
other::r-x
default:user::rwx
default:user:bob:rwx
default:group::r-x
default:mask::rwx
default:other::r-x

File Security: Lock Down Your Data Page 40

Note: you may want to add a regular ACL to give bob write permission to the directory. Without
this, bob will not be able to create new files in the directory.

 [root@machine home]# setfacl -m u:bob:7 acl_dir

File Security: Lock Down Your Data Page 41

4.7.1 Creating Files in an ACL Directory

When you create a new file in a directory that has a default ACL set on it, the directory’s ACL is
applied to the new file after it has been “filtered” by the umask setting:

[root@machine home]# cd acl_dir
[root@machine acl_dir]# touch acl.txt
[root@machine acl_dir]# ls -l acl.txt
-rw-rw-r--+ 1 root root 0 May 24 11:49 acl.txt
[root@ocs acl_dir]# getfacl acl.txt
file: acl.txt
owner: root
group: root
user::rw-
user:bob:rwx #effective:rw-
group::r-x #effective:r--
mask::rw-
other::r--

If the permissions specified by the ACL are higher than the umask setting then the umask
setting “wins out”.

File Security: Lock Down Your Data Page 42

4.7.2 Creating a Subdirectory in an ACL Directory

When you create a directory in an ACL directory, the umask setting is not used. The ACL
permissions, including the default permissions, are passed from the parent directory to the
subdirectory:

[root@machine acl_dir]# mkdir new_acl
[root@machine acl_dir]# getfacl new_acl
file: new_acl
owner: root
group: root
user::rwx
user:bob:rwx
group::r-x
mask::rwx
other::r-x
default:user::rwx
default:user:bob:rwx
default:group::r-x
default:mask::rwx
default:other::r-x

File Security: Lock Down Your Data Page 43

Appendix A: Summary of Commands

Command Description
chmod Changes file and directory permissions
getfacl Displays ACL permissions of files and directories
groups Displays what groups the current user is a member of
setfacl Sets ACL permissions on files and directories
umask Sets the default permissions for all new files or directories

File Security: Lock Down Your Data Page 44

Appendix B: Additional Resources

Books

Cert Guide
By Damian Tomasino
Publisher: Pearson
ISBN: 978-0-321-76795-0
Pgs. 131-141

Running Linux
By Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, Lar Kaufman
Publisher: O'Reilly
ISBN: 0596007604
Chapter #4

Web sites

www.OneCourseSource.com/pdf/ResourceGuide - Sections: 4.1.10, 4.4.7; 4.4.8

http://www.tldp.org/HOWTO/Security-HOWTO/index.html - Chapter #5: Files and Filesystem
Security

Man pages

Chmod groups umask
getfacl setfacl

File Security: Lock Down Your Data Page 45

	1.3 Changing Permissions
	3.1.1 Seting the setuid permission
	User Primary Group Supplementary Groups
	Note: While members of the beta group can read each other’s files, they cannot easily modify the files. This could be corrected by either changing their umask values or setting default ACLs on the directory (covered later in this presentation).
	3.2.3 Caution Regarding setgid
	3.3.1 Seting sticky bit

